损失函数
L1损失函数
#默认情况下L1Loss的reduction是mean,表示计算均值
mean_loss = L1Loss()
#指定reduction为sum,表示计算误差和
sum_loss = L1Loss(reduction='sum')
mean_result = mean_loss(inputs, targets)
sum_result = sum_loss(inputs, targets)
均方误差
mse_loss = nn.MSELoss()
mse_result = mse_loss
交叉熵损失
loss_cross = nn.CrossEntropyLoss()
result_cross = loss_cross(inputs, targets)
完整代码
import torch
import torchvision
from torch import nn
from torch.nn import L1Loss
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset, batch_size=1)
class Test(nn.Module):
def __init__(self):
super(Test, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss()
test = Test()
for data in dataloader:
imgs, targets = data
outputs = test(imgs)
print("outputs:", outputs)
print("targets:", targets)
result_loss = loss(outputs, targets)
print("loss:",result_loss)
评论区